Effect of Furnace Gas Composition on Characteristics of Supersonic Oxygen Jets in the Converter Steelmaking Process

Materials (Basel). 2020 Jul 28;13(15):3353. doi: 10.3390/ma13153353.

Abstract

During the converter steelmaking process, the presence of supersonic oxygen jets can provide oxygen to high-temperature metal baths that promotes chemical reactions in the bath, accelerates the smelting rhythm, and facilitates a uniform distribution of the ingredients in the bath. In this paper, a computational fluid dynamics (CFD) model with combustion reactions is established and compared to the results of combustion experiment. This paper studies the behavior and fluid flow characteristics of supersonic oxygen jets under different environmental compositions under a steelmaking temperature of 1873 K. This validated CFD model can be used to investigate the effect of furnace gas on supersonic oxygen jet characteristics during the converter steelmaking process. The results indicate that the composition of furnace gas has an impact on the characteristics of the oxygen jet. Specifically, as the carbon monoxide (CO) volume fraction increases, the high velocity region of supersonic oxygen jet increases, and the high temperature and the high turbulent kinetic energy regions expand.

Keywords: combustion experiment; furnace gas composition; numerical simulation; supersonic oxygen jet.