Increased IL-2 and Reduced TGF-β Upon T-Cell Stimulation are Associated with GM-CSF Upregulation in Multiple Immune Cell Types in Multiple Sclerosis

Biomedicines. 2020 Jul 18;8(7):226. doi: 10.3390/biomedicines8070226.

Abstract

Granulocyte macrophage colony stimulating factor (GM-CSF) is a pro-inflammatory cytokine produced by immune cells. Recent evidence suggests that GM-CSF plays an important role in multiple sclerosis (MS) pathogenesis. We investigated the expression and regulation of GM-CSF in different immune cells in MS. We also investigated the differentiation and frequency of GM-CSF-producing Th cells that do not co-express interferon (IFN)-γ or interleukin-17 (IL-17) (Th-GM cells) in MS. We found a significant increase in the percentage of GM-CSF-expressing Th cells, Th1 cells, Th-GM cells, cytotoxic T (Tc) cells, monocytes, natural killer (NK) cells, and B cells in PBMC from MS patients stimulated with T cell stimuli. Stimulated PBMC culture supernatants from MS patients contained significantly higher levels of IL-2, IL-12, IL-1β, and GM-CSF and significantly lower levels of transforming growth factor (TGF-)β. Blocking IL-2 reduced the frequency of Th-GM cells in PBMC from MS patients. The frequency of Th-GM cells differentiated in vitro from naïve CD4+ T cells was significantly higher in MS patients and was further increased in MS with IL-2 stimulation. These findings suggest that all main immune cell subsets produce more GM-CSF in MS after in vitro stimulation, which is associated with defective TGF-β and increased IL-2 and IL-12 production. Th-GM cells are increased in MS. GM-CSF may be a potential therapeutic target in MS.

Keywords: B cells; GM-CSF; MS/EAE; NK cells; PBMC; T cells; human; monocytes.