Cyclodextrin-Assisted Hierarchical Aggregation of Dawson-type Polyoxometalate in the Presence of {Re6Se8} Based Clusters

Inorg Chem. 2020 Aug 17;59(16):11396-11406. doi: 10.1021/acs.inorgchem.0c01160. Epub 2020 Jul 24.

Abstract

The association of metallic clusters (CLUS) and polyoxometalates (POM) into hierarchical architectures is achieved using γ-cyclodextrin (γ-CD) as a supramolecular connector. The new self-assembled systems, so-called CLUSPOM, are formed from Dawson-type polyoxometalate [P2W18O62]6- and electron-rich rhenium clusters. It is worth noting that a cluster-based cation [{Re6Se8}(H2O)6]2+ on one hand and a cluster-based anion on the other hand [{Re6Se8}(CN)6]4- can be associated with the anionic POM. In the absence of the supramolecular connector, a "CLUSPOM salt" was obtained from aqueous solution of the cationic cluster and the polyoxometalate. In this solid, the arrangement between the polymetallic building blocks is mainly governed by long-range Coulombic interactions. In the presence of γ-CD, the Dawson anion and the cationic cluster are assembled differently, forming a hierarchical supramolecular solid, K2[{Re6Se8}(H2O)6]2{[P2W18O62]@2γ-CD}·42H2O, where the organic macrocycle acts as a ditopic linker between the inorganic building blocks. In such an edifice, the short-range molecular recognition dominates the long-range Coulombic interactions leading to a specific three-dimensional organization. Interestingly, the assembling of anionic POM [P2W18O62]6- with the anionic rhenium cluster [{Re6Se8}(CN)6]4- is also achieved with γ-CD despite the repulsive forces between the nanosized anions. The resulting solid, K10{[{Re6Se8}(CN)6]@2γ-CD}[P2W18O62]·33H2O, is built from 1:2 inclusion complexes {[{Re6Se8}(CN)6]@2γ-CD}4- linked by a POM unit interacting with the exterior wall of the organic macrocycle. Multinuclear NMR and small-angle X-ray scattering investigations support supramolecular preorganization in aqueous solution prior to crystallization.