Effects of dietary supplementation of l-methionine vs. dl-methionine on performance, plasma concentrations of free amino acids and other metabolites, and myogenesis gene expression in young growing pigs

Transl Anim Sci. 2018 Sep 27;3(1):329-339. doi: 10.1093/tas/txy109. eCollection 2019 Jan.

Abstract

Methionine (Met), the second or third limiting amino acid (AA) in typical swine diets, plays important roles in promoting swine health and growth, especially, muscle growth. Whereas dl-Met products have been used in swine industry for many years, l-Met products have been developed recently. This research was conducted to study the effects of supplemental l-Met or dl-Met on nutrient metabolism, muscle gene expression, and growth performance of pigs. Twenty crossbred young barrows (initial body weight [BW] 21.2 ± 2.7 kg) were randomly assigned to 20 individual pens and two dietary treatments according to a completely randomized design with pigs serving as the experiment unit (n = 10). Two corn and soybean meal-based diets (diets 1 and 2) were formulated to meet or exceed the recommended requirements for energy, AA, and other nutrients (NRC. 2012. Nutrient requirements of swine, 11th ed. Washington, DC: The National Academies Press; AMINODat 5.0). Crystalline l-Met and dl-Met were supplemented to diets 1 and 2 (both at 0.13%, as-fed basis), respectively. After 4 wk of an ad libitum feeding trial, BW and feed intake were measured to calculate average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F). Blood samples were collected from the jugular vein for analyses of plasma AA and metabolite concentrations. The longissimus dorsi muscle samples were collected for analysis of myogenesis gene expression. Data were analyzed using Student's t-test. There were no differences (P = 0.56 to 0.94) in ADG, ADFI, or G:F between pigs fed the two experimental diets and no differences between diets were observed in plasma free AA concentrations. No differences were observed between pigs fed the two diets in expression of mRNA for eight myogenesis-related genes, which were myogenic differentiation 1, myogenin, myogenic factors 5, muscle regulatory factor 4 (a.k.a. myogenic factors 6), and myocyte enhancer factors 2A, 2B, 2C, and 2D. In conclusion, results of this experiment indicate that the bioefficacy of l-Met is not different from that of dl-Met, which is likely because of an efficient conversion of d-Met to l-Met by pigs.

Keywords: DL-methionine; L-methionine; growth performance; muscle gene expression; pig; plasma amino acid and metabolite.