Effects of nitrogen deposition and phosphorus addition on arbuscular mycorrhizal fungi of Chinese fir (Cunninghamia lanceolata)

Sci Rep. 2020 Jul 23;10(1):12260. doi: 10.1038/s41598-020-69213-6.

Abstract

Nitrogen (N) deposition is a key factor that affects terrestrial biogeochemical cycles with a growing trend, especially in the southeast region of China, where shortage of available phosphorus (P) is particularly acute and P has become a major factor limiting plant growth and productivity. Arbuscular mycorrhizal fungi (AMF) establish a mutualistic symbiosis with plants, and play an important role in enhancing plant stress resistance. However, the response of AMF to the combined effects of N deposition and P additions is poorly understood. Thus, in this study, a field experiment was conducted in 10-year Chinese fir forests to estimate the effects of simulated nitrogen (N) deposition (low-N, 30 kg ha-1 year-1 and high-N, 60 kg ha-1 year-1) and phosphorus (P) addition treatments (low-P, 20 mg kg-1 and high-P, 40 mg kg-1) on AMF since April 2017, which was reflected in AMF root colonization rates and spore density of rhizosphere soil. Our results showed that N deposition significantly decreased AMF root colonization rates and spore density. In N-free plots, P addition significantly decreased AMF root colonization rates, but did not significantly alter spore density. In low-N plots, colonization rates significantly decreased under low P addition, but significantly increased under high P addition, and spore density exhibited a significant decline under high P additions. In high-N plots, colonization rates and spore density significantly increased under P additions. Interactive effects of simulated N deposition and P addition on both colonization rates and spore density were significant. Moderate N deposition or P addition can weaken the symbiotic relationship between plants and AMF, significantly reducing AMF colonization rates and inhibiting spore production. However, a moderate addition of P greatly enhances spore yield. In the case of interactive effects, the AMF colonization rates and spore density are affected by the relative content of N and P in the soil.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cunninghamia / metabolism*
  • Cunninghamia / microbiology*
  • Host-Pathogen Interactions*
  • Mycorrhizae*
  • Nitrogen / metabolism*
  • Phosphorus / metabolism*
  • Soil Microbiology
  • Spores, Fungal

Substances

  • Phosphorus
  • Nitrogen