Hdac9 inhibits medial artery calcification through down-regulation of Osterix

Vascul Pharmacol. 2020 Sep:132:106775. doi: 10.1016/j.vph.2020.106775. Epub 2020 Jul 21.

Abstract

Backgrounds: Medial artery calcification (MAC) significantly contributes to the increased cardiovascular death in patients with chronic kidney disease (CKD). Previous genome-wide association studies have shown that various genetic variants of the histone deacetylase Hdac9 are associated with cardiovascular disease, but the role of Hdac9 in MAC under CKD conditions remains unclear.

Methods: High phosphate-induced vascular smooth muscle cell (VSMC) calcification and MAC in mice administered with vitamin D3 (vD) were used in the present study. Alizarin red staining, calcium quantitative assay, qPCR, western blotting and histology were performed.

Results: Hdac9 expression was significantly down-regulated during high phosphate-induced vascular smooth muscle cell (VSMC) calcification and MAC in mice administered with vitamin D3 (vD). Furthermore, high phosphate treatment inhibited phosphorylation of Akt, and pharmacological inhibition of Akt signaling reduced Hdac9 expression in cultured VSMCs. Knockdown of Hdac9 significantly enhanced calcium deposition in VSMCs. Conversely, adenovirus mediated-overexpression of Hdac9 inhibited high phosphate induced VSMC in vitro calcification. Our subsequent mechanistic studies revealed that the anti-calcific effect of Hdac9 was mediated through down-regulation of osteoblast-specific transcription factor Osterix.

Conclusion: These data suggest that Hdac9 is a novel inhibitor of MAC and may represent a potential therapeutic target for MAC in CKD patients.

Keywords: Chronic kidney disease; Hdac9; Medial artery calcification; Osterix; Vascular smooth muscle cell.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Cholecalciferol
  • Disease Models, Animal
  • Down-Regulation
  • Histone Deacetylases / genetics
  • Histone Deacetylases / metabolism*
  • Male
  • Mice, Inbred C57BL
  • Muscle, Smooth, Vascular / enzymology*
  • Muscle, Smooth, Vascular / pathology
  • Myocytes, Smooth Muscle / metabolism*
  • Phosphorylation
  • Proto-Oncogene Proteins c-akt / metabolism
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*
  • Signal Transduction
  • Sp7 Transcription Factor / genetics
  • Sp7 Transcription Factor / metabolism*
  • Vascular Calcification / chemically induced
  • Vascular Calcification / enzymology*
  • Vascular Calcification / genetics
  • Vascular Calcification / pathology

Substances

  • Repressor Proteins
  • Sp7 Transcription Factor
  • Sp7 protein, mouse
  • Cholecalciferol
  • Proto-Oncogene Proteins c-akt
  • Hdac9 protein, mouse
  • Histone Deacetylases