The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica

Funct Plant Biol. 2004 Aug;31(7):731-741. doi: 10.1071/FP03082.

Abstract

Deschampsia antarctica Desv. (Poaceae) is the only grass that grows in the maritime Antarctic. Constant low temperatures and episodes of high light are typical conditions during the growing season at this latitude. These factors enhance the formation of active oxygen species and may cause photoinhibition. Therefore, an efficient mechanism of energy dissipation and / or scavenging of reactive oxygen species (ROS) would contribute to survival in this harsh environment. In this paper, non-acclimated and cold-acclimated D. antarctica were subjected to high light and / or low temperature for 24 h. The contribution of non-photochemical dissipation of excitation light energy and the activities of detoxifying enzymes in the development of resistance to chilling induced photoinhibition were studied by monitoring PSII fluorescence, total soluble antioxidants, and pigments contents and measuring variations in activity of superoxide dismutase (SOD; EC 1.15.1.1), ascorbate peroxidase (APX; EC 1.11.1.11), and glutathione reductase (GR; EC 1.6.4.2). The photochemical efficiency of PSII, measured as Fv / F m, and the yield of PSII electron transport (ΦPSII) both decreased under high light and low temperatures. In contrast, photochemical quenching (qP) in both non-acclimated and cold-acclimated plants remained relatively constant (approximately 0.8) in high-light-treated plants. Unexpectedly, qP was lower (0.55) in cold-acclimated plants exposed to 4°C and low light intensity. Activity of SOD in cold-acclimated plants treated with high light at low temperature showed a sharp peak 2-4 h after the beginning of the experiment. In cold-acclimated plants APX remained high with all treatments. Activity of GR decreased in cold-acclimated plants. Compared with other plants, D. antarctica exhibited high levels of SOD and APX activity. Pigment analyses show that the xanthophyll cycle is operative in this plant. We propose that photochemical quenching and particularly the high level of antioxidants help D. antarctica to resist photoinhibitory conditions. The relatively high antioxidant capacity of D. antarctica may be a determinant for its survival in the harsh Antarctic environment.