Design, Synthesis and Evaluation of 2,4-Diaminoquinazoline Derivatives as Potential Tubulin Polymerization Inhibitors

ChemMedChem. 2020 Oct 5;15(19):1802-1812. doi: 10.1002/cmdc.202000185. Epub 2020 Aug 26.

Abstract

Microtubules are highly dynamic polymers composed of α- and β-tubulin proteins that have been shown to be potential therapeutic targets for the development of anticancer drugs. Currently, a wide variety of chemically diverse agents that bind to β-tubulin have been reported. Nocodazole (NZ) and colchicine (COL) are well-known tubulin-depolymerizing agents that have close binding sites in the β-tubulin. In this study, we designed and synthesized a set of nine 2,4-diaminoquinazoline derivatives that could occupy both NZ and COL binding sites. The synthesized compounds were evaluated for their antiproliferative activities against five cancer cell lines (PC-3, HCT-15, MCF-7, MDA-MB-231, and SK-LU-1), a noncancerous one (COS-7), and peripheral blood mononuclear cells (PBMC). The effect of compounds 4 e and 4 i on tubulin organization and polymerization was analyzed on the SK-LU-1 cell line by indirect immunofluorescence, western blotting, and tubulin polymerization assays. Our results demonstrated that both compounds exert their antiproliferative activity by inhibiting tubulin polymerization. Finally, a possible binding pose of 4 i in the NZ/COL binding site was determined by using molecular docking and molecular dynamics (MD) approaches. To our knowledge, this is the first report of non-N-substituted 2,4-diaminoquinazoline derivatives with the ability to inhibit tubulin polymerization.

Keywords: antiproliferative activity; diaminoquinazoline; molecular dynamics; nocodazole site; tubulin polymerization inhibition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • Humans
  • Models, Molecular
  • Molecular Structure
  • Polymerization / drug effects
  • Quinazolines / chemical synthesis
  • Quinazolines / chemistry
  • Quinazolines / pharmacology*
  • Structure-Activity Relationship
  • Tubulin / metabolism*
  • Tubulin Modulators / chemical synthesis
  • Tubulin Modulators / chemistry
  • Tubulin Modulators / pharmacology*

Substances

  • Antineoplastic Agents
  • Quinazolines
  • Tubulin
  • Tubulin Modulators
  • 2,4-diaminoquinazoline