E487K-Induced Disorder in Functionally Relevant Dynamics of Mitochondrial Aldehyde Dehydrogenase 2

Biophys J. 2020 Aug 4;119(3):628-637. doi: 10.1016/j.bpj.2020.07.002. Epub 2020 Jul 10.

Abstract

Mitochondrial aldehyde dehydrogenase 2 (ALDH2), which is a homotetramer assembled by two equivalent dimers, is an important enzyme that metabolizes ethanol-derived acetaldehyde to acetate in a coenzyme-dependent manner. The highly reactive acetaldehyde exhibits a toxic effect, indicating that the proper functioning of ALDH2 is essential to counteract aldehyde-associated diseases. It is known that the catalytic activity of ALDH2 is drastically impaired by a frequently observed mutation, E487K, in a dominant fashion. However, the molecular basis of the inactivation mechanism is elusive because of the complex nature of the dynamic behavior. Here, we performed microsecond-timescale molecular dynamics simulations of the proteins complexed with coenzymes. The E487K mutation elevated the conformational heterogeneity of the dimer interfaces, which are relatively distal from the substituted residue. Dynamic network analyses showed that Glu487 and the dimer interface were dynamically communicated, and the dynamic community further spanned throughout all of the subunits in the wild-type; however, this network was completely rearranged by the E487K mutation. The perturbation of the dynamic properties led to alterations of the global conformational motions and destabilization of the coenzyme binding required for receiving a proton from the catalytic nucleophile. The insights into the dynamic behavior of the dominant negative mutant in this work will provide clues to restore its function.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aldehyde Dehydrogenase, Mitochondrial / genetics
  • Aldehyde Dehydrogenase, Mitochondrial / metabolism
  • Ethanol*
  • Molecular Dynamics Simulation*
  • Mutation

Substances

  • Ethanol
  • Aldehyde Dehydrogenase, Mitochondrial