SnO2 Nanoflower-Nanocrystalline Cellulose Composites as Anode Materials for Lithium-Ion Batteries

Materials (Basel). 2020 Jul 15;13(14):3165. doi: 10.3390/ma13143165.

Abstract

One of the biggest challenges in the commercialization of tin dioxide (SnO2)-based lithium-ion battery (LIB) electrodes is the volume expansion of SnO2 during the charge-discharge process. Additionally, the aggregation of SnO2 also deteriorates the performance of anode materials. In this study, we prepared SnO2 nanoflowers (NFs) using nanocrystalline cellulose (CNC) to improve the surface area, prevent the particle aggregation, and alleviate the change in volume of LIB anodes. Moreover, CNC served not only as the template for the synthesis of the SnO2 NFs but also as a conductive material, after annealing the SnO2 NFs at 800 °C to improve their electrochemical performance. The obtained CNC-SnO2NF composite was used as an active LIB electrode material and exhibited good cycling performance and a high initial reversible capacity of 891 mA h g-1, at a current density of 100 mA g-1. The composite anode could retain 30% of its initial capacity after 500 charge-discharge cycles.

Keywords: CNC; SnO2; carbon-based conductive materials; lithium-ion batteries; nanocrystalline cellulose; tin dioxide nanoflower.