Characterization of gut contractility and microbiota in patients with severe chronic constipation

PLoS One. 2020 Jul 17;15(7):e0235985. doi: 10.1371/journal.pone.0235985. eCollection 2020.

Abstract

Chronic constipation (CC) is one of the most common gastrointestinal disorders worldwide. Its pathogenesis, however, remains largely unclear. The purpose of the present work was to gain an insight into the role of contractility and microbiota in the etiology of CC. To this end, we studied spontaneous and evoked contractile activity of descending colon segments from patients that have undergone surgery for refractory forms of CC. The juxta-mucosal microbiota of these colon samples were characterized with culture-based and 16S rRNA sequencing techniques. In patients with CC the spontaneous colonic motility remained unchanged compared to the control group without dysfunction of intestinal motility. Moreover, contractions induced by potassium chloride and carbachol were increased in both circular and longitudinal colonic muscle strips, thus indicating preservation of contractile apparatus and increased sensitivity to cholinergic nerve stimulation in the constipated intestine. In the test group, the gut microbiota composition was assessed as being typically human, with four dominant bacterial phyla, namely Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria, as well as usual representation of the most prevalent gut bacterial genera. Yet, significant inter-individual differences were revealed. The phylogenetic diversity of gut microbiota was not affected by age, sex, or colonic anatomy (dolichocolon, megacolon). The abundance of butyrate-producing genera Roseburia, Coprococcus, and Faecalibacterium was low, whereas conventional probiotic genera Lactobacillus and Bifidobacteria were not decreased in the gut microbiomes of the constipated patients. As evidenced by our study, specific microbial biomarkers for constipation state are absent. The results point to a probable role played by the overall gut microbiota at the functional level. To our knowledge, this is the first comprehensive characterization of CC pathogenesis, finding lack of disruption of motor activity of colonic smooth muscle cells and insufficiency of particular members of gut microbiota usually implicated in CC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Chronic Disease
  • Classification
  • Colon / microbiology*
  • Colon / physiopathology*
  • Constipation / microbiology*
  • Constipation / physiopathology*
  • Female
  • Gastrointestinal Microbiome*
  • Humans
  • Male
  • Middle Aged
  • Muscle Contraction*
  • Young Adult

Grants and funding

This research was funded by the Russian Foundation for Basic Research (grants number 17-00- 00456 for DRY and 19-315-90084 for GFS). The work was performed using the equipment of Interdisciplinary Center of Shared Facilities of Kazan Federal University for cellular, genomic and post-genomic research in Volga region and in frames of Russian Government Program of Competitive Development of Kazan Federal University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.