Femtosecond Laser Pulse Excitation of DNA-Labeled Gold Nanoparticles: Establishing a Quantitative Local Nanothermometer for Biological Applications

ACS Nano. 2020 Jul 28;14(7):8570-8583. doi: 10.1021/acsnano.0c02899. Epub 2020 Jul 17.

Abstract

Femtosecond (fs) laser pulsed excitation of plasmonic nanoparticle (NP)-biomolecule conjugates is a promising method to locally heat biological materials. Studies have demonstrated that fs pulses of light can modulate the activity of DNA or proteins when attached to plasmonic NPs; however, the precision over subsequent biological function remains largely undetermined. Specifically, the temperature the localized biomolecules "experience" remains unknown. We used 55 nm gold nanoparticles (AuNPs) displaying double-stranded (ds) DNA to examine how, for dsDNA with different melting temperatures, the laser pulse energy fluence and bulk solution temperature affect the rate of local DNA denaturation. A universal "template" single-stranded DNA was attached to the AuNP surface, and three dye-labeled probe strands, distinct in length and melting temperature, were hybridized to it creating three individual dsDNA-AuNP bioconjugates. The dye-labeled probe strands were used to quantify the rate and amount of DNA release after a given number of light pulses, which was then correlated to the dsDNA denaturation temperature, resulting in a quantitative nanothermometer. The localized DNA denaturation rate could be modulated by more than threefold over the biologically relevant range of 8-53 °C by varying pulse energy fluence, DNA melting temperature, and surrounding bath temperature. With a modified dissociation equation tailored for this system, a "sensed" temperature parameter was extracted and compared to simulated AuNP temperature profiles. Determining actual biological responses in such systems can allow researchers to design precision nanoscale photothermal heating sources.

Keywords: DNA denaturation; femtosecond pulsed laser; gold nanoparticle; local heating; photothermal effect; plasmonic nanoparticles.

MeSH terms

  • DNA
  • Gold*
  • Lasers
  • Metal Nanoparticles*
  • Temperature

Substances

  • Gold
  • DNA