Impact of Administration Time and Kv7 Subchannels on the Cardioprotective Efficacy of Kv7 Channel Inhibition

Drug Des Devel Ther. 2020 Jul 2:14:2549-2560. doi: 10.2147/DDDT.S226406. eCollection 2020.

Abstract

Purpose: The mechanism of cardioprotection by Kv7.1-5 (KCNQ1-5) channels inhibition by XE991 is unclear. We examined the impact of administration time on the cardioprotective efficacy of XE991, the involvement of key pro-survival kinases, and the importance of the Kv7 subchannels.

Methods: Isolated perfused rat hearts were divided into five groups: 1) vehicle, 2) pre-, 3) post- or 4) pre- and post-ischemic administration of XE991 or 5) chromanol 293B (Kv7.1 inhibitor) followed by infarct size quantification. HL-1 cells undergoing simulated ischemia/reperfusion were exposed to either a) vehicle, b) pre-, c) per-, d) post-ischemic administration of XE991 or pre-, per- and post-ischemic administration of e) XE991, f) Chromanol 293B or g) HMR1556 (Kv7.1 inhibitor). HL-1 cell injury was evaluated by propidium iodide/Hoechst staining. Pro-survival kinase activation of Akt, Erk and STAT3 in XE991-mediated HL-1 cell protection was evaluated using phosphokinase inhibitors. Kv7 subtype expression was examined by RT-PCR and qPCR.

Results: XE991, but not Chromanol 293B, reduced infarct size and improved hemodynamic recovery in all isolated heart groups. XE991 protected HL-1 cells when administered during simulated ischemia. Minor activation of the survival kinases was observed in cells exposed to XE991 but pharmacological inhibition of kinase activation did not reduce XE991-mediated protection. Kv7 subchannels 1-5 were all present in rat hearts but predominately Kv7.1 and Kv7.4 were present in HL-1 cells and selective Kv7.1 did not reduce ischemia/reperfusion injury.

Conclusion: The cardioprotective efficacy of XE991 seems to depend on its presence during ischemia and early reperfusion and do not rely on RISK (p-Akt and p-Erk) and SAFE (p-STAT3) pathway activation. The protective effect of XE991 seems mainly mediated through the Kv7.4 subchannel.

Keywords: Kv7 channels; cardioprotection; myocardial infarction; myocardial ischemia reperfusion injury.

MeSH terms

  • Animals
  • Chromans / administration & dosage
  • Chromans / pharmacology*
  • KCNQ1 Potassium Channel / antagonists & inhibitors*
  • Male
  • Potassium Channel Blockers / administration & dosage
  • Potassium Channel Blockers / pharmacology*
  • Protective Agents / administration & dosage
  • Protective Agents / pharmacology*
  • Rats
  • Rats, Wistar
  • Sulfonamides / administration & dosage
  • Sulfonamides / pharmacology*
  • Time Factors

Substances

  • Chromans
  • HMR 1556
  • KCNQ1 Potassium Channel
  • Potassium Channel Blockers
  • Protective Agents
  • Sulfonamides
  • 6-cyano-4-(N-ethylsulfonyl-N-methylamino)-3-hydroxy-2,2-dimethylchromane

Grants and funding

This study received financial supports from Danish Heart Foundation, AP Moller Foundation, The Danish Council for Strategic Research (11-108354) and The Ellehammer Fund.