ScVO4:Bi3+ thermographic phosphor particles for fluid temperature imaging with sub-°C precision

Opt Lett. 2020 Jul 15;45(14):3893-3896. doi: 10.1364/OL.392088.

Abstract

We synthesized and characterized ScVO4:Bi3+ thermographic phosphor particles and demonstrated their use as a tracer for temperature imaging in a near-ambient temperature liquid flow using a single laser/camera luminescence lifetime dual-frame ratio-based method. Owing to a high temperature sensitivity of up to 6%/°C, the single-shot single-pixel temperature precision at a 400 µm spatial resolution is better than ±0.4C (1σ) across the 20 to 60°C range, representing a factor >5 improvement compared to previous works using thermographic phosphors. The measurement duration is on the order of the luminescence lifetime (2 µs), which is applicable in both gas and liquid flows. This is a general temperature imaging method for sensitive measurements in dynamic fluid mechanics and thermal science applications.