Spontaneous four-wave mixing in silicon nitride waveguides for broadband coherent anti-Stokes Raman scattering spectroscopy

Opt Lett. 2020 Jul 15;45(14):3873-3876. doi: 10.1364/OL.396394.

Abstract

We present a light source for coherent anti-Stokes Raman scattering (CARS) based on broadband spontaneous four-wave mixing, with the potential to be further integrated. By using 7 mm long silicon nitride waveguides, which offer tight mode confinement and a high nonlinear refractive index coefficient, broadband signal and idler pulses were generated with 4 nJ of input pulse energy. In comparison to fiber-based experiments, the input energy and the waveguide length were reduced by two orders of magnitude, respectively. The idler and residual pump pulses were used for CARS measurements, enabling chemically selective and label-free spectroscopy over the entire fingerprint region, with an ultrafast fiber-based pump source at 1033 nm wavelength. The presented simple light source paves the path towards cost-effective, integrated lab-on-a-chip CARS applications.