Computational Screening of Structure-Directing Agents for the Synthesis of Pure Silica ITE Zeolite

J Phys Chem Lett. 2020 Aug 6;11(15):6164-6167. doi: 10.1021/acs.jpclett.0c01734. Epub 2020 Jul 20.

Abstract

"Shape" was the first criterion claimed to explain the specificity between organic structure-directing agents (OSDAs) and zeolite micropores. With the advent of computational chemistry methods applied to study the effectiveness of SDA-zeolite combinations, "energy" (mainly van der Waals) became the most commonly invoked concept to explain the zeolite phase selectivity. The lower the energy, the better the SDA. In this study, we rescue the concept of shape, and we combine it with the concept of energy within the frame of a SDA screening approach to identify new SDAs for the synthesis of cage-based ITE zeolite. Once we identify an appropriate shape fingerprint, filtering through the SDA database can be done quickly and accurately. With the shape selection, an automated Monte Carlo software allows us to assess the suitability using the force-field-calculated zeo-SDA energy. The computational approach can be promptly applied to other cage-based zeolites.