The growth feature and its diagnostic value for benign and malignant pulmonary nodules met in routine clinical practice

J Thorac Dis. 2020 May;12(5):2019-2030. doi: 10.21037/jtd-19-3591.

Abstract

Background: Growth rate is an independent risk factor for lung cancer in screened pulmonary nodules. This study aimed to clarify growth characteristics of pulmonary nodules in routine clinical practice and examine whether volume doubling time (VDT) can predict the malignancy of these nodules.

Methods: We retrospectively enrolled patients with 5-30-mm-sized pulmonary nodules that had been surgically resected after a follow-up of at least 3 months. Two follow-up computed tomography (CT) images with similar thickness and long interval were obtained. Then, three-dimensional (3D) manual segmentation for all nodules was performed on two follow-up CT scans. Subsequently, VDT was calculated for nodules with a change in volume of at least 25%.

Results: Overall, 305 pulmonary nodules in 305 patients (men, 36.7%; median age, 57) were included. The mean increased diameter, mass, and volume of benign (n=86) and malignant (n=219) nodules were 0.09 vs. 2.37 mm, 0.10 vs. 0.66 g, and 32.74 vs. 1,871.28 mm3, respectively (P<0.05). In total, 24 of 86 benign nodules (28%, 18 grew and 6 shrank) and 121 of 219 malignant nodules (55%, 114 grew and 7 shrank) changed over time. The median VDTs of growing benign and malignant nodules were 389 and 526 days, respectively, (P=0.18), and the area under the receiver operating characteristic (ROC) curve was 0.67 (0.55-0.78), with a sensitivity and specificity of 69% and 58%, respectively. The median VDT for growing nodules was 339 days for inflammatory pseudotumors, 226 days for granulomas, 640 days for benign tumors, 1,541 days for enlarged lymph nodes, 762 days for adenocarcinoma in situ, 954 days for microinvasive adenocarcinoma, 534 days for invasive adenocarcinoma, and 118 days for squamous cell carcinoma.

Conclusions: In routine clinical practice, many malignant nodules could grow slowly or even remain stable over time. Regarding growing nodules, the diagnostic value of VDT was limited.

Keywords: Lung cancer; growth; pulmonary nodule; volume doubling time (VDT).