Prior Expectations of Motion Direction Modulate Early Sensory Processing

J Neurosci. 2020 Aug 12;40(33):6389-6397. doi: 10.1523/JNEUROSCI.0537-20.2020. Epub 2020 Jul 8.

Abstract

Perception is a process of inference, integrating sensory inputs with prior expectations. However, little is known regarding the temporal dynamics of this integration. It has been proposed that expectation plays a role early in the perceptual process, biasing sensory processing. Alternatively, others suggest that expectations are integrated only at later, postperceptual decision-making stages. The current study aimed to dissociate between these hypotheses. We exposed human participants (male and female) to auditory cues predicting the likely direction of upcoming moving dot patterns, while recording neural activity using magnetoencephalography (MEG). Participants' reports of the moving dot directions were biased toward the direction predicted by the cues. To investigate when expectations affected sensory representations, we used inverted encoding models to decode the direction represented in early sensory signals. Strikingly, the cues modulated the direction represented in the MEG signal as early as 150 ms after visual stimulus onset. While this may not reflect a modulation of the initial feedforward sweep, it does reveal a modulation of early sensory representations. Exploratory analyses showed that the neural modulation was related to perceptual expectation effects: participants with a stronger perceptual bias toward the predicted direction also revealed a stronger reflection of the predicted direction in the MEG signal. For participants with this perceptual bias, a correlation between decoded and perceived direction already emerged before visual stimulus onset, suggesting that the prestimulus state of the visual cortex influences sensory processing. Together, these results suggest that expectations play an integral role in the neural computations underlying perception.SIGNIFICANCE STATEMENT Perception can be thought of as an inferential process in which our brains integrate sensory inputs with prior expectations to make sense of the world. This study investigated whether this integration occurs early or late in the process of perception. We exposed human participants to auditory cues that predicted the likely direction of visual moving dots, while recording neural activity with millisecond resolution using magnetoencephalography. Participants' perceptual reports of the direction of the moving dots were biased toward the predicted direction. Additionally, the predicted direction modulated the neural representation of the moving dots just 150 ms after they appeared. This suggests that prior expectations affected sensory processing at early stages, playing an integral role in the perceptual process.

Keywords: magnetoencephalography; perceptual inference; prediction; sensory processing; top down modulation; visual perception.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Adult
  • Auditory Perception / physiology*
  • Cues
  • Decision Making / physiology
  • Female
  • Humans
  • Magnetoencephalography
  • Male
  • Motion Perception / physiology*
  • Photic Stimulation
  • Visual Cortex / physiology*
  • Young Adult