Structure refinement of black phosphorus under high pressure

J Chem Phys. 2020 Jul 7;153(1):014704. doi: 10.1063/5.0012870.

Abstract

The structure refinement of black phosphorus was performed at pressures of up to 3.2 GPa at room temperature by powder neutron diffraction techniques. The bond lengths and bond angles between the phosphorus atoms at pressures were precisely determined and confirmed to be consistent with those of the previous single crystal x-ray analysis [A. Brown and S. Rundqvist, Acta Cryst. 19, 684 (1965)]. Although the lattice parameters exhibited an anisotropic compressibility, the covalent P1-P2 and P1-P3 bond lengths were almost independent of pressure and only the P3-P1-P2 bond angle was reduced significantly. On the basis of our results, the significant discrepancy in the bond length reported by Cartz et al. [J. Chem. Phys. 71, 1718 (1979)] has been resolved. Our structural data will contribute to the elucidation of the Dirac semimetal state of black phosphorus under high pressure.