Enantioseparation, in vitro testing, and structural characterization of triple-binding reactivators of organophosphate-inhibited cholinesterases

Biochem J. 2020 Aug 14;477(15):2771-2790. doi: 10.1042/BCJ20200192.

Abstract

The enantiomers of racemic 2-hydroxyimino-N-(azidophenylpropyl)acetamide-derived triple-binding oxime reactivators were separated, and tested for inhibition and reactivation of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibited with tabun (GA), cyclosarin (GF), sarin (GB), and VX. Both enzymes showed the greatest affinity toward the methylimidazole derivative (III) of 2-hydroxyimino-N-(azidophenylpropyl)acetamide (I). The crystal structure was determined for the complex of oxime III within human BChE, confirming that all three binding groups interacted with active site residues. In the case of BChE inhibited by GF, oximes I (kr = 207 M-1 min-1) and III (kr = 213 M-1 min-1) showed better reactivation efficiency than the reference oxime 2-PAM. Finally, the key mechanistic steps in the reactivation of GF-inhibited BChE with oxime III were modeled using the PM7R6 method, stressing the importance of proton transfer from Nε of His438 to Oγ of Ser203 for achieving successful reactivation.

Keywords: PM7R6 method; cholinesterase; hydroxyiminoacetamide; reactivation; stereoselectivity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholinesterase / chemistry
  • Acetylcholinesterase / metabolism*
  • Butyrylcholinesterase / chemistry
  • Butyrylcholinesterase / metabolism*
  • Catalytic Domain
  • Cholinesterase Inhibitors / pharmacology*
  • Crystallography, X-Ray
  • Enzyme Activation / drug effects
  • Humans
  • In Vitro Techniques
  • Kinetics
  • Organophosphates / pharmacology*
  • Organophosphorus Compounds / pharmacology
  • Oximes / chemistry
  • Oximes / isolation & purification*
  • Oximes / metabolism
  • Oximes / pharmacology
  • Sarin / pharmacology
  • Stereoisomerism

Substances

  • Cholinesterase Inhibitors
  • Organophosphates
  • Organophosphorus Compounds
  • Oximes
  • Sarin
  • Acetylcholinesterase
  • Butyrylcholinesterase
  • tabun
  • cyclohexyl methylphosphonofluoridate