Suzuki-Miyaura Cross-Coupling of Bromotryptophan Derivatives at Ambient Temperature

Chemistry. 2020 Dec 9;26(69):16357-16364. doi: 10.1002/chem.202002454. Epub 2020 Oct 29.

Abstract

Mild reaction conditions are highly desirable for bio-orthogonal side chain derivatizations of amino acids, peptides or proteins due to the sensitivity of these substrates. Transition metal catalysed cross-couplings such as Suzuki-Miyaura reactions are highly versatile, but usually require unfavourable reaction conditions, in particular, when applied with aryl bromides. Ligand-free solvent-stabilised Pd-nanoparticles represent an efficient and sustainable alternative to conventional phosphine-based catalysts, because the cross-coupling can be performed at considerably lower temperature. We report on the application of such a highly reactive heterogeneous catalyst for the Suzuki-Miyaura cross-coupling of brominated tryptophan derivatives. The solvent-stabilised Pd-nanoparticles are even more efficient than the literature-known ADHP-Pd precatalyst. Interestingly, the latter also leads to the formation of quasi-homogeneous Pd-nanoparticles as the catalytic species. One advantage of our approach is the compatibility with aqueous and aerobic conditions at near-ambient temperatures and short reaction times of only 2 h. The influence of different Nα -protecting groups, boronic acids as well as the impact of different amino acid side chains in bromotryptophan-containing peptides has been studied. Notably, a surprising acceleration of the catalysis was observed when palladium-coordinating side chains were present in proximal positions.

Keywords: Pd nanoparticles; bio-orthogonality; halotryptophan; heterogeneous catalysis; oxygen-promoted cross-coupling.