Ventilation-perfusion heterogeneity measured by the multiple inert gas elimination technique is minimally affected by intermittent breathing of 100% O2

Physiol Rep. 2020 Jul;8(13):e14488. doi: 10.14814/phy2.14488.

Abstract

Proton magnetic resonance (MR) imaging to quantify regional ventilation-perfusion ( V˙A/Q˙ ) ratios combines specific ventilation imaging (SVI) and separate proton density and perfusion measures into a composite map. Specific ventilation imaging exploits the paramagnetic properties of O2 , which alters the local MR signal intensity, in an FI O2 -dependent manner. Specific ventilation imaging data are acquired during five wash-in/wash-out cycles of breathing 21% O2 alternating with 100% O2 over ~20 min. This technique assumes that alternating FI O2 does not affect V˙A/Q˙ heterogeneity, but this is unproven. We tested the hypothesis that alternating FI O2 exposure increases V˙A/Q˙ mismatch in nine patients with abnormal pulmonary gas exchange and increased V˙A/Q˙ mismatch using the multiple inert gas elimination technique (MIGET).The following data were acquired (a) breathing air (baseline), (b) breathing alternating air/100% O2 during an emulated-SVI protocol (eSVI), and (c) 20 min after ambient air breathing (recovery). MIGET heterogeneity indices of shunt, deadspace, ventilation versus V˙A/Q˙ ratio, LogSD V˙ , and perfusion versus V˙A/Q˙ ratio, LogSD Q˙ were calculated. LogSD V˙ was not different between eSVI and baseline (1.04 ± 0.39 baseline, 1.05 ± 0.38 eSVI, p = .84); but was reduced compared to baseline during recovery (0.97 ± 0.39, p = .04). There was no significant difference in LogSD Q˙ across conditions (0.81 ± 0.30 baseline, 0.79 ± 0.15 eSVI, 0.79 ± 0.20 recovery; p = .54); Deadspace was not significantly different (p = .54) but shunt showed a borderline increase during eSVI (1.0% ± 1.0 baseline, 2.6% ± 2.9 eSVI; p = .052) likely from altered hypoxic pulmonary vasoconstriction and/or absorption atelectasis. Intermittent breathing of 100% O2 does not substantially alter V˙A/Q˙ matching and if SVI measurements are made after perfusion measurements, any potential effects will be minimized.

Keywords: hyperoxia; magnetic resonance imaging; pulmonary perfusion distribution; pulmonary ventilation distribution; specific ventilation imaging; ventilation-perfusion ratio.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Aged
  • Female
  • Humans
  • Hyperoxia / physiopathology*
  • Intermittent Positive-Pressure Breathing / methods*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Noble Gases
  • Ventilation-Perfusion Ratio*

Substances

  • Noble Gases