The effects of refraction and caustics on autoproducts

J Acoust Soc Am. 2020 Jun;147(6):3959. doi: 10.1121/10.0001399.

Abstract

Quadratic products of complex amplitudes from acoustic fields with nonzero bandwidth, denoted "autoproducts," can mimic acoustic fields at frequencies lower or higher than the bandwidth of the original field. While this mimicry has been found to be very promising for a variety of signal processing applications, its theoretical extent has, thus far, only been considered under the most elementary ray approximation. In this study, the combined effects of refraction and diffraction are considered in environments where refraction causes neighboring rays to cross and form caustics. Acoustic fields on and near caustics are not well-predicted by elementary ray-acoustic theory. Furthermore, caustics introduce frequency dependence to the nearby acoustic field and a phase shift on the acoustic waves that passes through them. The effects these caustics have on autoproducts is assessed here using two simple, range-independent waveguides with index of refraction (n) profiles that are n2-quadratic and n2-linear. It is found that in multipath regions where rays have passed through differing numbers of caustics, the ability of autoproducts to mimic out-of-band fields is substantially hindered.