Magnetic field-enhanced beam monitor for ionizing radiation

Rev Sci Instrum. 2020 Jun 1;91(6):063503. doi: 10.1063/5.0007092.

Abstract

For the microwave cavity resonance spectroscopy based non-destructive beam monitor for ionizing radiation, an addition-which adapts the approach to conditions where only little ionization takes place due to, e.g., small ionization cross sections, low gas pressures, and low photon fluxes-is presented and demonstrated. In this experiment, a magnetic field with a strength of 57 ± 1 mT was used to extend the lifetime of the afterglow of an extreme ultraviolet-induced plasma by a factor of ∼5. Magnetic trapping is expected to be most successful in preventing the decay of ephemeral free electrons created by low-energy photons. Good agreement has been found between the experimental results and the decay rates calculated based on the ambipolar and classical collision diffusion models.