Expected yaw rate-based trajectory tracking control with vision delay for intelligent vehicle

Sci Prog. 2020 Jul-Sep;103(3):36850420934274. doi: 10.1177/0036850420934274.

Abstract

Accurate and real-time position of preview point is significant to trajectory tracking control of vision-guided intelligent vehicle. The unavoidable delay of road automatic identification system weakens trajectory tracking control performance, and even deteriorates the vehicle stability. Therefore, a compensator for the delay of road automatic identification system was proposed which combines the current statistical model and adaptive Kalman predictor to estimate the state of preview point position. The trajectory tracking sliding mode controller of intelligent vehicle is established through a 2-degrees of freedom vehicle dynamic model and motion model by using MATLAB/Simulink and CarSim. The trajectory tracking performance under 20-100 ms delay is analyzed. The simulation results show that the trajectory tracking performance of intelligent vehicle will be affected by the delay of road automatic identification system, reducing tracking accuracy. And when the delay is too large, it will deteriorate the vehicle stability and safety. In addition, the simulation results also verify the effectiveness of current statistical-adaptive Kalman predictor compensator at different delays.

Keywords: Vision-guided intelligent vehicle; adaptive Kalman predictor; current statistical model; sliding mode control; time delay.