[Effect of Optimized Fertilization and Biochar Application on Phosphorus Loss in Purple Soil Sloping Farmland]

Huan Jing Ke Xue. 2020 Mar 8;41(3):1286-1295. doi: 10.13227/j.hjkx.201909221.
[Article in Chinese]

Abstract

Phosphorus is an essential nutrient for crop growth, but the input of excess phosphorus is a significant cause of eutrophication. This study explored the relationship between fertilization methods and phosphorus loss in actual production, providing a theoretical basis for scientific fertilization and rational reduction of fertilizer application. In the experiment, a wild-type OD flow plot was used to monitor the occurrence of multiple rainfall runoff and sediment yield in purple soil sloping farmland in 2017-2018. Four different schemes of non-fertilizer treatment, conventional fertilization treatment, optimized fertilization treatment, and reduced fertilization combined with biochar were studied. The effects of soil flow, surface runoff, and sediment phosphorus loss on purple soil sloping farmland were analyzed. The results showed that:①The total yield of each treatment was optimized (20737.23 L) > conventional (18513.17 L) > CK (18134.58 L) > biochar (13594.85 L), and the total sediment yield of each treatment was CK (1998 kg·hm-2) > biochar (1884 kg·hm-2) > optimized (1681 kg·hm-2) > conventional (910 kg·hm-2). The middle stream of soil is the main type of runoff in the rainy season, accounting for 60.14%-87.34% of the total output flow. The total amount of sediment produced by each treatment was not significantly different from that of the conventional treatment (P>0.05). ②The flux of total phosphorus loss in each treatment was characterized by sediment > surface runoff > soil middle flow. Phosphorus lost through the middle stream of soil is the least, accounting for only 2.63%-12.91% of the flux of total phosphorus loss, while the flux of sediment loss of phosphorus can reach 63.74%-78.74%, and thus is the main output route of soil phosphorus loss. ③The application of biochar can effectively reduce the abortion flow in the soil of purple soil sloping land, and the loss flux of orthophosphate in the middle stream, which are 49.94% and 56.45% lower than the conventional treatment, respectively. However, the interception effect on surface runoff is not good, and there is no significant influence on the flux loss of particulate phosphorus. At the same time, the flux of total phosphorus in surface runoff and sediment is significantly increased by 73.28% and 123.53%, respectively, compared with conventional treatment (P<0.05). Therefore, to control the loss of phosphorus in purple soil sloping farmland in southwest China, we should focus on reducing the occurrence of soil sediment loss. Bio-carbon should be further optimized in the practical application of agricultural production with the phosphorus fertilizer input ratio.

Keywords: Bio-charcoal; overland flow; phosphorus loss; runoff; sloping land.

Publication types

  • English Abstract