Improvement of Heat Sink Effect Using Zinc Oxide Nanostructure

J Nanosci Nanotechnol. 2020 Nov 1;20(11):6980-6984. doi: 10.1166/jnn.2020.18816.

Abstract

Heat sinks that dissipate heat effectively play a significant role in devices with high-precision temperature control, such as thermal cyclers for polymerase chain reaction (PCR). This study was carried out to develop a heat sink with a high thermal conductivity to dissipate heat effectively. To increase the surface area of the heat sink, zinc oxide (ZnO) nanostructures were fabricated on an aluminum plate. ZnO nanostructures were fabricated by hydrothermal method and confirmed by scanning electron microscopy and X-ray diffraction. With the increase in the concentration of the precursors, the length of the nanorods increased, and with longer reaction time, nanostructures connected with higher stability and larger surface area. Thermal conductivity is increased by ZnO nanostructures and is affected by the concentration of precursors and the reaction time. Thermal conductivity of an optimal ZnO-coated Al plate is 2 times higher than that of a bare one. This technology can be applied to portable PCR devices to reduce weight, size, and power consumption.

Publication types

  • Research Support, Non-U.S. Gov't