A physiologically-based nanocarrier biopharmaceutics model to reverse-engineer the in vivo drug release

Eur J Pharm Biopharm. 2020 Aug:153:257-272. doi: 10.1016/j.ejpb.2020.06.004. Epub 2020 Jun 24.

Abstract

Over the years, a wide variety of nanomedicines has entered global markets, providing a blueprint for the emerging generics industry. They are characterized by a unique pharmacokinetic behavior difficult to explain with conventional methods. In the present approach a physiologically-based nanocarrier biopharmaceutics model has been developed. Providing a compartmental framework of the distribution and elimination of nanocarrier delivery systems, this model was applied to human clinical data of the drug products Doxil®, Myocet®, and AmBisome® as well as to the formulation prototypes Foslip® and NanoBB-1-Dox. A parameter optimization by differential evolution led to an accurate representation of the human data (AAFE < 2). For each formulation, separate half-lives for the carrier and the free drug as well as the drug release were calculated from the total drug concentration-time profile. In this context, a static in vitro set-up and the dynamic in vivo situation with a continuous infusion and accumulation of the carrier were simulated. For Doxil®, a total drug release ranging from 0.01 to 22.1% was determined. With the time of release exceeding the elimination time of the carrier, the major fraction was available for drug targeting. NanoBB-1-Dox released 76.2-77.8% of the drug into the plasma, leading to an accumulated fraction of approximately 20%. The mean residence time of encapsulated doxorubicin was 128 h for Doxil® and 0.784 h for NanoBB-1-Dox, giving the stealth liposomes more time to accumulate at the intended target site. For all other formulations, Myocet®, AmBisome®, and Foslip®, the major fraction of the dose was released into the blood plasma without being available for targeted delivery.

Keywords: AmBisome®; Amphotericin; Dissolution; Doxil®; Doxorubicin; Drug delivery; Foslip®; Generics; In vitro release; Liposome; Myocet®; Nanomaterial; Nanomedicine; PBPK; Pharmacokinetics; Release; Temoporfin.

MeSH terms

  • Amphotericin B / chemistry
  • Amphotericin B / metabolism
  • Biopharmaceutics / methods
  • Chemistry, Pharmaceutical / methods
  • Doxorubicin / analogs & derivatives
  • Doxorubicin / chemistry
  • Doxorubicin / metabolism
  • Drug Carriers / chemistry*
  • Drug Delivery Systems / methods
  • Drug Liberation / physiology*
  • Half-Life
  • Humans
  • Liposomes / chemistry
  • Nanoparticles / chemistry*
  • Polyethylene Glycols / chemistry
  • Polyethylene Glycols / metabolism

Substances

  • Drug Carriers
  • Liposomes
  • liposomal amphotericin B
  • liposomal doxorubicin
  • Polyethylene Glycols
  • Amphotericin B
  • Doxorubicin