Generation of induced pluripotent stem cells from large domestic animals

Stem Cell Res Ther. 2020 Jun 25;11(1):247. doi: 10.1186/s13287-020-01716-5.

Abstract

Background: Induced pluripotent stem cells (iPSCs) have enormous potential in developmental biology studies and in cellular therapies. Although extensively studied and characterized in human and murine models, iPSCs from animals other than mice lack reproducible results.

Methods: Herein, we describe the generation of robust iPSCs from equine and bovine cells through lentiviral transduction of murine or human transcription factors Oct4, Sox2, Klf4, and c-Myc and from human and murine cells using similar protocols, even when different supplementations were used. The iPSCs were analyzed regarding morphology, gene and protein expression of pluripotency factors, alkaline phosphatase detection, and spontaneous and induced differentiation.

Results: Although embryonic-derived stem cells are yet not well characterized in domestic animals, generation of iPS cells from these species is possible through similar protocols used for mouse or human cells, enabling the use of pluripotent cells from large animals for basic or applied purposes. Herein, we also infer that bovine iPS (biPSCs) exhibit similarity to mouse iPSCs (miPSCs), whereas equine iPSs (eiPSCs) to human (hiPSCs).

Conclusions: The generation of reproducible protocols in different animal species will provide an informative tool for producing in vitro autologous pluripotent cells from domestic animals. These cells will create new opportunities in animal breeding through transgenic technology and will support a new era of translational medicine with large animal models.

Keywords: Bovine; Cellular reprogramming; Equine; Induced pluripotency; iPSCs; stem cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Domestic
  • Cattle
  • Cell Differentiation
  • Cellular Reprogramming
  • Embryonic Stem Cells
  • Fibroblasts
  • Horses
  • Induced Pluripotent Stem Cells*
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors / genetics
  • Mice
  • Octamer Transcription Factor-3 / genetics
  • SOXB1 Transcription Factors / genetics

Substances

  • KLF4 protein, human
  • Klf4 protein, mouse
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors
  • Octamer Transcription Factor-3
  • SOXB1 Transcription Factors