Liver-Specific siRNA-Mediated Stat3 or C3 Knockdown Improves the Outcome of Experimental Autoimmune Myocarditis

Mol Ther Methods Clin Dev. 2020 May 22:18:62-72. doi: 10.1016/j.omtm.2020.05.023. eCollection 2020 Sep 11.

Abstract

Myocarditis can lead to autoimmune disease, dilated cardiomyopathy, and heart failure, which is modeled in the mouse by cardiac myosin immunization (experimental autoimmune myocarditis [EAM]). Signal transducer and activator of transcription 3 (STAT3) systemic inhibition exerts both preventive and therapeutic effects in EAM, and STAT3 constitutive activation elicits immune-mediated myocarditis dependent on complement C3 and correlating with activation of the STAT3-interleukin 6 (IL-6) axis in the liver. Thus, liver-specific STAT3 inhibition may represent a therapeutic option, allowing to bypass the heart toxicity, predicted by systemic STAT3 inhibition. We therefore decided to explore the effectiveness of silencing liver Stat3 and C3 in preventing EAM onset and/or the recovery of cardiac functions. We first show that complement C3 and C5 genetic depletion significantly prevents the onset of spontaneous myocarditis, supporting the complement cascade as a viable target. In order to interfere with complement production and STAT3 activity specifically in the liver, we took advantage of liver-specific Stat3 or C3 small interfering (si)RNA nanoparticles, demonstrating that both siRNAs can significantly prevent myocarditis onset and improve the recovery of heart functions in EAM. Our data demonstrate that liver-specific Stat3/C3 siRNAs may represent a therapeutic option for autoimmune myocarditis and suggest that complement levels and activation might be predictive of progression to dilated cardiomyopathy.

Keywords: C3/C5 null mice; STAT3; acute-phase response (APR); complement; constitutively active STAT3 mice; experimental autoimmune myocarditis (EAM); hepatotropic siRNA therapy.