Mechanical Properties and Fracture Behavior of Crumb Rubber Basalt Fiber Concrete Based on Acoustic Emission Technology

Sensors (Basel). 2020 Jun 21;20(12):3513. doi: 10.3390/s20123513.

Abstract

Basalt fiber and crumb rubber, as excellent road material modifiers, have great advantages in improving the mechanical properties and fracture behavior of concrete. Acoustic emission (AE) is a nondestructive testing and real-time monitoring technique used to characterize the fracture behavior of concrete specimens. The object of this paper is to investigate the effects of crumb rubber replacement rate, basalt fiber content and water-binder ratio on the mechanical properties and fracture behavior of crumb rubber basalt fiber concrete (CRBFC) based on orthogonal test. The fracture behavior of a CRBFC specimen under three-point flexural conditions was monitored by AE technology and the relative cumulative hit (RCH) was defined to characterize the internal damage degree of CRBFC. The experimental results showed that, considering the mechanical strength and fracture damage behavior of CRBFC, the optimal crumb rubber replacement rate, basalt fiber content and water-binder ratio are 10%, 2 kg/m3 and 0.46, respectively. In addition, it was found that AE parameters can effectively characterize the fracture behavior of CRBFC. The fracture stages of CRBFC can be divided according to the cumulative AE hits and counts. AE amplitude value can be used as an early warning of CRBFC specimen fracture. Moreover, the fracture mode can be identified by RA and average frequency (AF) values variation during the loading process.

Keywords: acoustic emission; basal fiber; crumb rubber; fracture behavior; mechanical properties; orthogonal test.