Stochastic and mixed flower graphs

Phys Rev E. 2020 May;101(5-1):052315. doi: 10.1103/PhysRevE.101.052315.

Abstract

Stochasticity is introduced to a well studied class of recursively grown graphs: (u,v)-flower nets, which have power-law degree distributions as well as small-world properties (when u=1). The stochastic variant interpolates between different (deterministic) flower graphs thus adding flexibility to the model. The random multiplicative growth process involved, however, leads to a spread ensemble of networks with finite variance for the number of links, nodes, and loops. Nevertheless, the degree exponent and loopiness exponent attain unique values in the thermodynamic limit of infinitely large graphs. We also study a class of mixed flower networks, closely related to the stochastic flowers, but which are grown recursively in a deterministic way. The deterministic growth of mixed flower-nets eliminates ensemble spreads, and their recursive growth allows for exact analysis of their (uniquely defined) mixed properties.