Antimicrobial resistance due to the content of potentially toxic metals in soil and fertilizing products

Microb Ecol Health Dis. 2018 Dec 11;29(1):1548248. doi: 10.1080/16512235.2018.1548248. eCollection 2018.

Abstract

Potentially toxic metals (PTM), along with PTM-resistant bacteria and PTM-resistance genes, may be introduced into soil and water through sewage systems, direct excretion, land application of biosolids (organic matter recycled from sewage, especially for use in agriculture) or animal manures as fertilizers, and irrigation with wastewater or treated effluents. In this review article, we have evaluated whether the content of arsenic (As), cadmium (Cd), chromium (CrIII + CrVI), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), and zinc (Zn) in soil and fertilizing products play a role in the development, spreading, and persistence of bacterial resistance to these elements, as well as cross- or co-resistance to antimicrobial agents. Several of the articles included in this review reported the development of resistance against PTM in both sewage and manure. Although PTM like As, Hg, Co, Cd, Pb, and Ni may be present in the fertilizing products, the concentration may be low since they occur due to pollution. In contrast, trace metals like Cu and Zn are actively added to animal feed in many countries. In several studies, several different bacterial species were shown to have a reduced susceptibility towards several PTM, simultaneously. However, neither the source of resistant bacteria nor the minimum co-selective concentration (MCC) for resistance induction are known. Co- or cross-resistance against highly important antimicrobials and critically important antimicrobials were identified in some of the bacterial isolates. This suggest that there is a genetic linkage or direct genetic causality between genetic determinants to these widely divergent antimicrobials, and metal resistance. Data regarding the routes and frequencies of transmission of AMR from bacteria of environmental origin to bacteria of animal and human origin were sparse. Due to the lack of such data, it is difficult to estimate the probability of development, transmission, and persistence of PTM resistance. Abbreviations: PTM: potentially toxic metals; AMR: antimicrobial resistance; ARG: antimicrobial resistance gene; MCC: minimum co-selective concentration; MDR: multidrug resistance; ARB: antimicrobial resistant bacteria; HGT: horizontal gene transfer; MIC: minimum inhibitory concentration.

Keywords: Potentially toxic metals; antimicrobial resistance; environment; fertilizing products; manure; sewage.

Publication types

  • Review

Grants and funding

This work was part of the report ‘The link between antimicrobial resistance and the content of potentially toxic metals in soil and fertilizing products’ performed by the Norwegian Scientific Committee for Food and Environment [VKM, 2017].