Static Polarizabilities at the Basis Set Limit: A Benchmark of 124 Species

J Chem Theory Comput. 2020 Aug 11;16(8):4874-4882. doi: 10.1021/acs.jctc.0c00128. Epub 2020 Jul 8.

Abstract

Benchmarking molecular properties with Gaussian-type orbital (GTO) basis sets can be challenging, because one has to assume that the computed property is at the complete basis set (CBS) limit, without a robust measure of the error. Multiwavelet (MW) bases can be systematically improved with a controllable error, which eliminates the need for such assumptions. In this work, we have used MWs within Kohn-Sham density functional theory to compute static polarizabilities for a set of 92 closed-shell and 32 open-shell species. The results are compared to recent benchmark calculations employing the GTO-type aug-pc4 basis set. We observe discrepancies between GTO and MW results for several species, with open-shell systems showing the largest deviations. Based on linear response calculations, we show that these discrepancies originate from artifacts caused by the field strength and that several polarizabilies from a previous study were contaminated by higher order responses (hyperpolarizabilities). Based on our MW benchmark results, we can affirm that aug-pc4 is able to provide results close to the CBS limit, as long as finite difference effects can be controlled. However, we suggest that a better approach is to use MWs, which are able to yield precise finite difference polarizabilities even with small field strengths.