Engineering of chimeric natural killer cell receptors to develop precision adoptive immunotherapies for cancer

Clin Exp Immunol. 2020 Oct;202(1):11-27. doi: 10.1111/cei.13478. Epub 2020 Jul 25.

Abstract

Natural killer (NK) cells are innate immune effectors which play a crucial role in recognizing and eliminating virally infected and cancerous cells. They effectively distinguish between healthy and distressed self through the integration of signals delivered by germline-encoded activating and inhibitory cell surface receptors. The frequent up-regulation of stress markers on genetically unstable cancer cells has prompted the development of novel immunotherapies that exploit such innate receptors. One prominent example entails the development of chimeric antigen receptors (CAR) that detect cell surface ligands bound by NK receptors, coupling this engagement to the delivery of tailored immune activating signals. Here, we review strategies to engineer CARs in which specificity is conferred by natural killer group 2D (NKG2D) or other NK receptor types. Multiple preclinical studies have demonstrated the remarkable ability of chimeric NK receptor-targeted T cells and NK cells to effectively and specifically eliminate cancer cells and to reject established tumour burdens. Importantly, such systems act not only acutely but, in some cases, they also incite immunological memory. Moreover, CARs targeted with the NKG2D ligand binding domain have also been shown to disrupt the tumour microenvironment, through the targeting of suppressive T regulatory cells, myeloid-derived suppressor cells and tumour vasculature. Collectively, these findings have led to the initiation of early-phase clinical trials evaluating both autologous and allogeneic NKG2D-targeted CAR T cells in the haematological and solid tumour settings.

Keywords: CAR; cancer; immunotherapy; natural killer receptors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Humans
  • Immunotherapy, Adoptive*
  • Killer Cells, Natural* / immunology
  • Killer Cells, Natural* / pathology
  • Killer Cells, Natural* / transplantation
  • Myeloid-Derived Suppressor Cells* / immunology
  • Myeloid-Derived Suppressor Cells* / pathology
  • Neoplasms* / genetics
  • Neoplasms* / immunology
  • Neoplasms* / pathology
  • Neoplasms* / therapy
  • Receptors, Chimeric Antigen* / genetics
  • Receptors, Chimeric Antigen* / immunology
  • Receptors, Chimeric Antigen* / therapeutic use
  • Receptors, Natural Killer Cell* / genetics
  • Receptors, Natural Killer Cell* / immunology

Substances

  • Receptors, Chimeric Antigen
  • Receptors, Natural Killer Cell