Particle Size Related Effects of Multi-Component Flame-Retardant Systems in Poly(Butadiene Terephthalate)

Polymers (Basel). 2020 Jun 9;12(6):1315. doi: 10.3390/polym12061315.

Abstract

Aluminum tris-(diethylphosphinate) (AlPi) is known to have an efficient flame-retardant effect when used in poly(butadiene terephthalates) (PBT). Additionally, better flame-retardant effects can be achieved through the partial substitution of AlPi by boehmite in multi-component systems, which have been shown to be an effective synergist due to cooling effects and residue formation. Although the potential of beneficial effects is generally well known, the influence of particle sizes and behavior in synergistic compositions are still unknown. Within this paper, it is shown that the synergistic effects in flammability measured by limiting oxygen index (LOI) can vary depending on the particle size distribution used in PBT. In conducting thermogravimetric analysis (TGA) measurements, it was observed that smaller boehmite particles result in slightly increased char yields, most probably due to increased reactivity of the metal oxides formed, and they react slightly earlier than larger boehmite particles. This leads to an earlier release of water into the system enhancing the hydrolysis of PBT. Supported by Fourier transformation infrared spectroscopy (FTIR), we propose that the later reactions of the larger boehmite particles decrease the portion of highly flammable tetrahydrofuran in the gas phase within early burning stages. Therefore, the LOI index increased by 4 vol. % when lager boehmite particles were used for the synergistic mixture.

Keywords: Aluminum diethylphosphinate; boehmite; flame retardants; poly(butadiene terephthalates) (PBT), mechanical properties.