Asymmetric electrode incorporated 2D GeSe for self-biased and efficient photodetection

Sci Rep. 2020 Jun 10;10(1):9374. doi: 10.1038/s41598-020-66263-8.

Abstract

2D layered germanium selenide (GeSe) with p-type conductivity is incorporated with asymmetric contact electrode of chromium/Gold (Cr/Au) and Palladium/Gold (Pd/Au) to design a self-biased, high speed and an efficient photodetector. The photoresponse under photovoltaic effect is investigated for the wavelengths of light (i.e. ~220, ~530 and ~850 nm). The device exhibited promising figures of merit required for efficient photodetection, specifically the Schottky barrier diode is highly sensitive to NIR light irradiation at zero voltage with good reproducibility, which is promising for the emergency application of fire detection and night vision. The high responsivity, detectivity, normalized photocurrent to dark current ratio (NPDR), noise equivalent power (NEP) and response time for illumination of light (~850 nm) are calculated to be 280 mA/W, 4.1 × 109 Jones, 3 × 107 W-1, 9.1 × 10-12 WHz-1/2 and 69 ms respectively. The obtained results suggested that p-GeSe is a novel candidate for SBD optoelectronics-based technologies.