Molecular phylogenetic analyses reveal a deep dichotomy in the conifer-inhabiting genus Trisetacus (Eriophyoidea: Nalepellidae), with the two lineages differing in their female genital morphology and host associations

Exp Appl Acarol. 2020 Jul;81(3):287-316. doi: 10.1007/s10493-020-00503-4. Epub 2020 Jun 8.

Abstract

We analyzed the phylogenetic relationships of the genus Trisetacus using two genes [cytochrome c oxidase subunit I (COI) and D1-D2 region of 28S rDNA (D1-D2 28S)], a representive taxon sampling (nearly 40% of known diversity), and a large set of close and distant outgroups. Our analyses suggest the presence of a dichotomy between Trisetacus associated with Cupressaceae and Pinaceae. The following smaller molecular clades were found: Pin-1 (bud mites, twig sheath mites, bark gall mites, and endoparasitic mites from pinaceans), Pin-2 (needle sheath mites from pines), Pin-2a (putative Nearctic group of needle sheath mites), Pin-2b (putative Palearctic group of needle sheath mites), Cup-1 and 2 (bud, cone, seed mites and mites living under bark scales from cupressaceans). The monophyly of the recently proposed subgenus Brevithecus nested within clade Cup-2 was confirmed. Ancestral character reconstruction analyses recovered: (1) Pinaceae as the ancestral hosts of Nalepellidae and Trisetacus, (2) repetitive reductions of the spermathecal tube independently occurred in two lineages of Trisetacus from Cupressaceae, and (3) several mite habitats on host (galls, cones, twig sheaths, seeds, inside leaves, and under scales) are evolutionarily derived states, whereas living in buds or needle sheaths are ancestral states for Trisetacus clades Cup and Pin. Using confocal microscopy, we identified six basic types of the female internal genitalia of Trisetacus based on shapes of the spermatheca and spermathecal tube. These genitalic types are strongly correlated with lineages recovered by molecular phylogenetic analyses, suggesting that the female genital morphology is both evolutionarily conserved and is a factor influencing macroevolutionary patterns in this group of mites.

Keywords: Confocal microscopy; Conifers; Cupressaceae; Gymnosperm pest; Phytoparasitic mites; Pinaceae.

MeSH terms

  • Animals
  • Female
  • Genitalia
  • Genitalia, Female
  • Mites*
  • Phylogeny*
  • Tracheophyta*