Influence of global climate on freshwater changes in Africa's largest endorheic basin using multi-scaled indicators

Sci Total Environ. 2020 Oct 1:737:139643. doi: 10.1016/j.scitotenv.2020.139643. Epub 2020 May 27.

Abstract

The poor investments in gauge measurements for hydro-climatic research in Africa has necessitated the need to investigate how decision makers can leverage on sophisticated space-borne measurements to improve knowledge on surface water hydrology that can feed directly into water accounting processes, and risk assessment from extreme droughts and its impacts. To demonstrate such potential, a suite of satellite earth observations (Sentinel-2, altimetry, Landsat, GRACE, and TRMM) and model data are combined with the standardized precipitation evapotranspiration index to assess the impacts of global climate on freshwater dynamics over the LCB (Lake Chad basin), Africa's largest endorheic basin. As shown in the results of this study, the significant relationship of climate modes (AMO; r=0.68 and 0.59; and AMM; r=0.42 and 0.47) with drought patterns in the LCB highlights the evidence of global climate influence in the region. The significant declines in drought extents and their intensities (2004 - 2015) over LCB coincide with the rise in surface water extent of the Lake Chad during the same period. Change detection analysis of open water features in the southern pool of Lake Chad during the 2015 - 2019 period shows that on the average, only 28.4% of inundated areas within the vicinity of the Lake persisted during the period. While the association of terrestrial water storage (TWS) with model-derived surface water storage (SWS) is strongest (r=0.89) in the catchments that provide the most nourishment to the Lake Chad, the relationship of rainfall (2002 - 2017) with TWS (r=0.85), model TWS (r=0.87) and SWS (r=0.88) confirm that the LCB's hydrology is predominantly climate-driven. This notion is further reinforced as the predicted SWS over the LCB using a support vector machine regression scheme was found to be strongly correlated (r=0.95 at α=0.05) with observed SWS.

Keywords: AMO; Climate variability; Drought; Remote sensing; Sentinel-2; Surface water.