Strongly Correlated Charge Density Wave in La_{2-x}Sr_{x}CuO_{4} Evidenced by Doping-Dependent Phonon Anomaly

Phys Rev Lett. 2020 May 22;124(20):207005. doi: 10.1103/PhysRevLett.124.207005.

Abstract

The discovery of charge-density-wave-related effects in the resonant inelastic x-ray scattering spectra of cuprates holds the tantalizing promise of clarifying the interactions that stabilize the electronic order. Here, we report a comprehensive resonant inelastic x-ray scattering study of La_{2-x}Sr_{x}CuO_{4} finding that charge-density wave effects persist up to a remarkably high doping level of x=0.21 before disappearing at x=0.25. The inelastic excitation spectra remain essentially unchanged with doping despite crossing a topological transition in the Fermi surface. This indicates that the spectra contain little or no direct coupling to electronic excitations near the Fermi surface, rather they are dominated by the resonant cross section for phonons and charge-density-wave-induced phonon softening. We interpret our results in terms of a charge-density wave that is generated by strong correlations and a phonon response that is driven by the charge-density-wave-induced modification of the lattice.