Effects of neuropeptide Y on the microvasculature of human skeletal muscle

Surgery. 2020 Jul;168(1):155-159. doi: 10.1016/j.surg.2020.04.020. Epub 2020 May 31.

Abstract

Background: Neuropeptide Y acts directly on the vasculature as a cotransmitter with norepinephrine for an augmented contraction. Little, however, is known about the effects of neuropeptide Y on the microvasculature of human skeletal muscle. Neuropeptide Y signaling has not been studied in the setting of cardiac surgery and cardiopulmonary bypass. We investigated the role of neuropeptide Y signaling on vasomotor tone in the microvessels of human skeletal muscle, as well as the effect of cardiopulmonary bypass on neuropeptide Y-induced responsiveness.

Methods: Specimens taken from intercostal muscles were collected from patients, pre- and post-cardiopulmonary bypass, undergoing coronary artery bypass grafting or cardiac valve surgery (n = 8/group). Microvessels (157 ± 47 microns) were isolated in vitro in a no-flow state. Arterial microvascular responses to a neuropeptide Y agonist, a Y1 receptor antagonist, phenylephrine, and the coadministration of neuropeptide Y and phenylephrine were examined. The abundance and localization of the Y1 receptor were measured using Western blot and immunofluorescence, respectively.

Results: Arterial microvessels showed responsiveness to the neuropeptide Y agonist (10-9 to 4 × 10-7 mol/L) both before and after cardiopulmonary bypass, reaching a 12.5% vasoconstriction from the baseline luminal diameter. With administration of the Y1 receptor antagonist after neuropeptide Y, the contractile response was eliminated (n = 3/group, P = .04). No difference in vasoconstriction was observed between pre- and post-cardiopulmonary bypass groups (P = .73). The coadministration of neuropeptide Y and phenylephrine (10-9 to 10-4 mol/L) elicited no difference in vasoconstriction (n = 7/group, P = .06 both pre- and post-cardiopulmonary bypass) when compared with phenylephrine alone (10-9 to 10-4 mol/L). No change in the protein expression or localization of the Y1 receptor was detected by Western blotting (n = 6/group, P = .44) or immunofluorescence (n = 6/group, P = .13).

Conclusion: Neuropeptide Y induced vasoconstriction, suggesting that neuropeptide Y may play an important role in the regulation of the peripheral microvasculature. There was no change in microvascular responsiveness to neuropeptide Y after cardiopulmonary bypass nor were there any synergistic effects of neuropeptide Y on phenylephrine-induced vasoconstriction in the skeletal muscle microvasculature.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Aged
  • Cardiopulmonary Bypass*
  • Female
  • Humans
  • In Vitro Techniques
  • Male
  • Microvessels / physiology*
  • Middle Aged
  • Muscle, Skeletal / blood supply
  • Neuropeptide Y / physiology*
  • Vasoconstriction*

Substances

  • Neuropeptide Y