Suppressed microRNA-195-5p expression in mycosis fungoides promotes tumor cell proliferation

Exp Dermatol. 2021 Aug;30(8):1141-1149. doi: 10.1111/exd.14124. Epub 2020 Jul 1.

Abstract

Background: Several cancers, including mycosis fungoides (MF), have reported dysregulation of miR-195-5p. miR-195-5p plays a role in cell cycle regulation in several malignant diseases.

Objectives: This study aimed to investigate: (a) the expression level of miR-195-5p in lesional MF skin biopsies and (b) the potential regulatory roles of miR-195-5p in MF.

Methods: Quantitative real-time polymerase chain reaction (RT-qPCR) was used to determine miR-195-5p expression in MF skin biopsies and cell lines. The effect of miR-195-5p and ADP-ribosylation factor-like protein 2 (ARL2) on cell cycle and apoptosis was measured by flow cytometry assays. Changes in ARL2 expression were determined by RT-qPCR and Western blotting (WB).

Results: We found lower expression levels of miR-195-5p in lesional skin from MF patients compared with non-lesional MF skin and skin from healthy volunteers. Additionally, miR-195-5p showed lower expression levels in the skin from patients with disease progression compared with patients with stable disease. In vitro studies showed that overexpression of miR-195-5p induced a cell cycle arrest in G0G1. Using microarray analysis, we identified several genes that were regulated after miR-195-5p overexpression. The most downregulated gene after miR-195-5p mimic transfection was ARL2. RT-qPCR and WB analyses confirmed downregulation of ARL2 following transfection with miR-195-5p mimic. Lastly, transfection with siRNA against ARL2 also induced a G0G1 arrest.

Conclusion: Upregulation of miR-195-5p in MF inhibits cycle arrest by downregulation of ARL2. miR-195-5p may thus function as a tumor suppressor in MF and low miR-195-5p expression in lesional MF skin may promote disease progression.

Keywords: ARL2; cancer; cell cycle arrest; cutaneous T-cell lymphoma; microRNA; microarray; proliferation; tumor suppressor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / genetics
  • Cell Cycle Checkpoints / genetics
  • Cell Line, Tumor
  • Cell Proliferation / genetics*
  • Disease Progression
  • Down-Regulation
  • GTP-Binding Proteins / genetics*
  • Gene Expression Regulation, Neoplastic
  • Humans
  • MicroRNAs / metabolism*
  • Mycosis Fungoides / genetics*
  • Mycosis Fungoides / pathology
  • Skin Neoplasms / genetics*
  • Skin Neoplasms / pathology

Substances

  • MIRN195 microRNA, human
  • MicroRNAs
  • ARL2 protein, human
  • GTP-Binding Proteins