Terminating transient chaos in spatially extended systems

Chaos. 2020 May;30(5):051108. doi: 10.1063/5.0011506.

Abstract

In many real-life systems, transient chaotic dynamics plays a major role. For instance, the chaotic spiral or scroll wave dynamics of electrical excitation waves during life-threatening cardiac arrhythmias can terminate by itself. Epileptic seizures have recently been related to the collapse of transient chimera states. Controlling chaotic transients, either by maintaining the chaotic dynamics or by terminating it as quickly as possible, is often desired and sometimes even vital (as in the case of cardiac arrhythmias). We discuss in this study that the difference of the underlying structures in state space between a chaotic attractor (persistent chaos) and a chaotic saddle (transient chaos) may have significant implications for efficient control strategies in real life systems. In particular, we demonstrate that in the latter case, chaotic dynamics in spatially extended systems can be terminated via a relatively low number of (spatially and temporally) localized perturbations. We demonstrate as a proof of principle that control and targeting of high-dimensional systems exhibiting transient chaos can be achieved with exceptionally small interactions with the system. This insight may impact future control strategies in real-life systems like cardiac arrhythmias.

MeSH terms

  • Action Potentials / physiology
  • Computer Simulation
  • Humans
  • Models, Cardiovascular
  • Models, Neurological
  • Nonlinear Dynamics*