Technological Advances in Prosthesis Design and Rehabilitation Following Upper Extremity Limb Loss

Curr Rev Musculoskelet Med. 2020 Aug;13(4):485-493. doi: 10.1007/s12178-020-09656-6.

Abstract

Purpose of review: The complexity of the human extremity, particularly the upper extremity and the hand, allows us to interact with the world. Prosthetists have struggled to recreate the intuitive motor control, light touch sensation, and proprioception of the innate limb in a manner that reflects the complexity of its native form and function. Nevertheless, recent advances in prosthesis technology, surgical innovations, and enhanced rehabilitation appear promising for patients with limb loss who hope to return to their pre-injury level of function. The purpose of this review is to illustrate recent technological advances that are moving us one step closer to the goal of multi-functional, self-identifiable, durable, and intuitive prostheses.

Recent findings: Surgical advances such as targeted muscle reinnervation, regenerative peripheral nerve interfaces, agonist-antagonist myoneural interfaces, and targeted sensory reinnervation; development of technology designed to restore sensation, such as implanted sensors and haptic devices; and evolution of osseointegrated (bone-anchored) prostheses show great promise. Augmented and virtual reality platforms have the potential to enhance prosthesis design, pre-prosthetic training, incorporation, and use. Emerging technologies move surgeons, rehabilitation physicians, therapists, and prosthetists closer to the goal of creating highly functional prostheses with elevated sensory and motor control. Collaboration between medical teams, scientists, and industry stakeholders will be required to keep pace with patients who require durable, high-functioning prostheses.

Keywords: Adaptive technology; Amputation; Limb loss; Myoelectric prostheses; Prosthetics; Rehabilitation.

Publication types

  • Review