Decidual CD8+T cells exhibit both residency and tolerance signatures modulated by decidual stromal cells

J Transl Med. 2020 Jun 1;18(1):221. doi: 10.1186/s12967-020-02371-3.

Abstract

Background: During early pregnancy, tolerance of the semi-allogeneic fetus necessitates comprehensive modifications of the maternal immune system. How decidual CD8+T (CD8+dT) cells balance maternal tolerance of the fetus with defense from invading pathogens remains undefined.

Methods: We investigated the distribution patterns of CD8+T cells and their heterogeneity in paired peripheral blood and decidual tissue in the first trimester of pregnancy using flow cytometry and mRNA-Seq. Gene Set Enrichment Analysis was utilized to determine the transcriptional features of CD8+dT cells. Moreover, we examined activation of T cells when they were cocultured with trophoblasts, in addition to the effect of the fetal-maternal environment on peripheral CD8+T (CD8+pT) cells.

Results: We found that, compared with CD8+pT cells, CD8+dT cells consisted mainly of effector memory cells (TEM) and terminally differentiated effector memory cells (TEMRA). Both TEM and TEMRA subsets contained increased numbers of CD27+CD28- cells, which have been shown to possess only partial effector functions. In-depth analysis of the gene-expression profiles of CD8+dT cells revealed significant enrichment in T cell exhaustion-related genes and core tissue residency signature genes that have been found recently to be shared by tissue resident memory cells and tumor-infiltrating lymphocytes (TILs). In accordance with gene expression, protein levels of the exhaustion-related molecules PD-1 and CD39 and the tissue resident molecules CD103 and CXCR3 were increased significantly with almost no perforin secretion in CD8+dT cells compared with CD8+pT cells. However, the levels of granzyme B, IFN-γ, and IL-4 in CD8+dT cells were increased significantly compared with those in CD8+pT cells. Both CD8+dT and CD8+pT cells were not activated after being cocultured with autologous trophoblast cells. Moreover, the production of granzyme B in CD103+CD8+dT cells decreased significantly compared with that in their CD103- counterparts. Coculture with decidual stromal cells and trophoblasts upregulated CD103 expression significantly in CD8+pT cells.

Conclusions: Our findings indicate that the selective silencing of effector functions of resident CD8+dT cells may favor maternal-fetal tolerance and that the decidual microenvironment plays an important role in promoting the residency of CD8+T cells and their tolerance-defense balance.

Keywords: CD8+T cell; Maternal–fetal tolerance; T cell exhaustion; Tissue resident memory cell.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CD8-Positive T-Lymphocytes*
  • Decidua
  • Female
  • Humans
  • Immune Tolerance
  • Pregnancy
  • Stromal Cells