Chlorophyll Metabolism and Gene Expression in Response to Submergence Stress and Subsequent Recovery in Perennial Ryegrass Accessions Differing in Growth Habits

J Plant Physiol. 2020 Aug:251:153195. doi: 10.1016/j.jplph.2020.153195. Epub 2020 May 25.

Abstract

Submergence-induced leaf senescence may alter chlorophyll metabolism. The objective of this study was to characterize chlorophyll biosynthesis and degradation in contrasting perennial ryegrass (Lolium perenne) in response to submergence stress and recovery. The light-green and fast-growing accession PI238938 and the darker-green and slow-growing cultivar BrightStar SLT were exposed to 0, 6 h, 1-, 3-, and 7-d of submergence stress and 1- and 5- d of de-submergence, respectively. Plant growth of PI238938 were more severely inhibited by submergence stress and recovery. Both accessions showed increased leaf malondialdehyde under stress and recovery, but reduced chlorophyll (Chl) concentrations were observed at 3- and 7-d of stress and at recovery. The reduction in Chl was more severe in BrightStar SLT at 7 d of stress. The concentration of 5-aminolevulenic acid was unaffected by stress but increased at 1d of recovery. Activities of 5-aminolevulinic acid dehydratase (ALAD) involved in Chl biosynthesis remained unchanged under stress and recovery, while the activities of Chl degrading enzymes chlorophyllase (CHL) and pheophytinase (PPH) increased at 3 d or 7 d of stress, and returned to the control level after recovery in both accessions. The downregulation of Chl-biosynthetic genes CHLI, POR, and CHLP and the upregulation of Chl-degrading genes CLH, PPH, and SGR were observed in both accessions under most of the stress periods. BrightStar SLT exhibited much lower expressions of the Chl-biosynthetic genes PBGD, CHS, and CHID under stress, while PI238938 had remarkably higher expressions of genes involved in Chl breakdown including CLH, PPH, PAO, RCCR, and SGR, and the expressions of these genes remained at a higher level at 1 d of recovery. The results indicated that submergence-induced leaf senescence and declines in Chl were associated with downregulation of more Chl-biosynthetic genes in slow-growing genotype and upregulation of more Chl-degrading genes in fast-growing genotype of perennial ryegrass.

Keywords: Chlorophyll; biosynthesis; degradation; gene expression; perennial ryegrass; recovery; submergence.

MeSH terms

  • Chlorophyll / biosynthesis
  • Chlorophyll / metabolism*
  • Gene Expression*
  • Immersion
  • Lolium / genetics*
  • Lolium / growth & development
  • Lolium / metabolism*
  • Stress, Physiological

Substances

  • Chlorophyll