Tactile distance adaptation aftereffects do not transfer to perceptual hand maps

Acta Psychol (Amst). 2020 Jul:208:103090. doi: 10.1016/j.actpsy.2020.103090. Epub 2020 May 30.

Abstract

Recent studies have demonstrated that mental representations of the hand dorsum are distorted even for healthy participants. Perceptual hand maps estimated by pointing to specific landmarks (e.g., knuckles and tips of fingers) is stretched and shrunk along the medio-lateral and the proximo-distal axes, respectively. Similarly, tactile distance perception between two touches is longer along the medio-lateral axis than the proximo-distal axis. The congruency of the two types of distortions suggests that common perceptual and neural representations may be involved in these processes. Prolonged stimulation by two simultaneous touches having a particular distance can bias subsequent perception of tactile distances (e.g., adaptation to a long distance induces shorter stimuli to be perceived even shorter). This tactile distance adaptation aftereffect has been suggested to occur based on the modulations of perceptual and neural responses at low somatosensory processing stages. The current study investigated whether tactile distance adaptation aftereffects affect also the pattern of distortions on the perceptual hand maps. Participants localized locations on the hand dorsum cued by tactile stimulations (Experiment 1) or visually presented landmarks on a hand silhouette (Experiment 2). Each trial was preceded by adaptation to either a small (2 cm) or large (4 cm) tactile distance. We found clear tactile distance aftereffects. However, no changes were observed for the distorted pattern of the perceptual hand maps following adaptation to a tactile distance. Our results showed that internal body representations involved in perceptual distortions may be distinct between tactile distance perception and the perceptual hand maps underlying position sense.

Keywords: Distance aftereffect; Implicit hand representation; Localization; Proprioception; Touch.

MeSH terms

  • Adaptation, Physiological
  • Fingers / physiology
  • Hand / physiology*
  • Humans
  • Touch
  • Touch Perception / physiology*