Temperature influences the ability of tall fescue to control transpiration in response to atmospheric vapour pressure deficit

Funct Plant Biol. 2012 Dec;39(12):979-986. doi: 10.1071/FP12172.

Abstract

Water availability for turfgrass systems is often limited and is likely to become more so in the future. Here, we conducted experiments that examined the ability of tall fescue (Festuca arundinacea Schreb.) to control transpiration with increasing vapour pressure deficit (VPD) and determined whether control was influenced by temperature. The first study was under steady-state conditions at two temperatures (21 and 27°C) and two VPDs (1.2 and 1.8kPa). At the lower temperature, water use was similar at both VPDs, indicating a restriction of transpiration at high VPD. At 27°C, transpiration control at high VPD was weakened and root growth also declined; both responses increase susceptibility to water-deficit stress. Another series of experiments was used to examine the physiological stability of the transpiration control. Temperature and VPD were adjusted in a stepwise manner and transpiration measured across a range of VPD in the days following environmental shifts. Results indicated that VPD control acclimated to the growth environment, with adjustment to drier conditions becoming evident after ~1 week. Control was again more effective at cool than at hot temperatures. Collectively, the results indicate that transpiration control by this cool season grass is most effective in the temperature range where it is best adapted.