Croton blanchetianus modulates its morphophysiological responses to tolerate drought in a tropical dry forest

Funct Plant Biol. 2017 Oct;44(10):1039-1051. doi: 10.1071/FP17098.

Abstract

An understanding of variations in morphophysiological leaf traits of plant models in dry tropical forests is essential for quantifying C fluxes from forest ecosystems in response to climate changes. The present study evaluated the influences of seasonal rainfall and different light conditions on the gas exchange, nutrients, organic compounds and morphological traits in Croton blanchetianus Baill. trees within a fragment of Caatinga forest. Stomatal conductance (gs) and net photosynthesis (PN) demonstrated variations within the diurnal cycle, with maximum values at approximately midday and minimum values at predawn. The PN and the diurnal integrated CO2 assimilation were lower during the dry season than in the rainy season. Water use efficiency was positively correlated with PN (r=0.73) during the dry season only. However, the correlation between PN and gs was observed during the rainy season only (r=0.60). Thus we demonstrated that C. blanchetianus has a remarkable ability to adapt to global climatic changes and could be considered a model in studies exploring water relationships in woody plants; consequently, this species may be important in future reforestation studies.