Spontaneous diametric-drive acceleration initiated by a single beam in a photonic lattice

Opt Lett. 2020 Jun 1;45(11):3175-3178. doi: 10.1364/OL.394838.

Abstract

We demonstrate that a single Gaussian-like beam can self-bend during nonlinear propagation in a uniform photonic lattice. The two components of the beam experiencing normal and anomalous diffractions spontaneously separate and form a pair in a diametric-drive acceleration due to nonlinear action. Such a diametric drive generally describes a jointly accelerating behavior of two beams analogous to positive- and negative-mass objects. The influences of the initial momentum of the input beam and the nonlinear strength are considered in this process. We further realize a self-bending propagation for a partially coherent light beam and discuss the impact of incoherence on the acceleration strength.